Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Sci Rep ; 11(1): 19193, 2021 09 28.
Article in English | MEDLINE | ID: covidwho-1442802

ABSTRACT

Outside of the ongoing COVID-19 pandemic, tuberculosis is the leading cause of infectious disease mortality globally. Currently, there is no commercially available point-of-care diagnostic that is rapid, inexpensive, and highly sensitive for the diagnosis of active tuberculosis disease. Here we describe the development and optimization of a novel, highly sensitive prototype bioelectronic tuberculosis antigen (BETA) assay to detect tuberculosis-specific antigen, CFP10, in small-volume serum and urine samples. In this proof-of-concept study we evaluated the performance of the BETA assay using clinical specimens collected from presumptive tuberculosis patients from three independent cohorts. Circulating CFP10 antigen was detected in ALL serum (n = 19) and urine (n = 3) samples from bacteriologically confirmed tuberculosis patients who were untreated or had less than one week of treatment at time of serum collection, successfully identifying all culture positive tuberculosis patients. No CFP10 antigen was detected in serum (n = 7) or urine (n = 6) samples from individuals who were determined to be negative for tuberculosis disease. Additionally, antigen quantification using the BETA assay of paired serum samples collected from tuberculosis patients (n = 8) both before and after treatment initiation, indicate consistently declining within-person levels of CFP10 antigen during treatment. This novel, low-cost assay demonstrates potential as a rapid, non-sputum-based, point-of-care tool for the diagnosis of tuberculosis disease.


Subject(s)
Diagnostic Tests, Routine/methods , Peptide Fragments , Tuberculosis/diagnosis , Antigens, Bacterial/blood , Antigens, Bacterial/isolation & purification , Antigens, Bacterial/urine , Mycobacterium tuberculosis/immunology , Peptide Fragments/blood , Peptide Fragments/isolation & purification , Peptide Fragments/urine , Sensitivity and Specificity , Tuberculosis, Pulmonary/diagnosis
2.
Biosens Bioelectron ; 194: 113590, 2021 Dec 15.
Article in English | MEDLINE | ID: covidwho-1392165

ABSTRACT

Combating the ongoing COVID-19 pandemic has put the spotlight on nutritional support of the immune system through consumption of vitamins C and D. Accordingly, there are urgent demands for an effective on-the-spot multi-vitamin self-testing platform that monitors the levels of these immune-supporting micronutrients for guiding precision nutrition recommendations. Herein, we present a compact bioelectronic dual sensor chip aimed at frequent on-the-spot simultaneous monitoring of the salivary vitamin C and D dynamics. The new bioelectronic chip combines a new electrocatalytic vitamin C amperometric assay along with competitive vitamin D immunoassay on neighboring electrodes, to perform selective and cross-talk free detection of both vitamins in a 10-µL saliva sample within 25 min. The distinct vitamin C or D temporal profiles obtained for different individuals after vitamin supplementation indicate the potential of the new bioelectronic chip strategy for enhancing personalized nutrition towards guiding dietary interventions to meet individual nutrition needs and promote immune system health.


Subject(s)
Biosensing Techniques , COVID-19 , Ascorbic Acid , Humans , Immune System , Pandemics , SARS-CoV-2 , Vitamin D , Vitamins
SELECTION OF CITATIONS
SEARCH DETAIL